metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

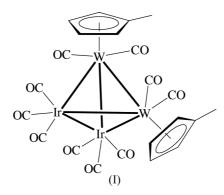
Nigel T. Lucas, Eleni G. A. Notaras and Mark G. Humphrey*

Department of Chemistry, Australian National University, Canberra ACT 0200, Australia

Correspondence e-mail: mark.humphrey@anu.edu.au

Key indicators

Single-crystal X-ray study T = 200 KMean $\sigma(\text{C}-\text{C}) = 0.013 \text{ Å}$ R factor = 0.042 wR factor = 0.054 Data-to-parameter ratio = 19.5


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$W_2Ir_2(CO)_{10}(\eta^5-C_5H_4Me)_2$

The title compound, decacarbonyl- $1\kappa^2 C_2 \kappa^2 C_3 \kappa^3 C_4 \kappa^3 C_5$ [1,2(η^5)-methylcyclopentadienyl]-*tetrahedro*-ditungstendiiridium, [W₂Ir₂(C₆H₇)₂(CO)₁₀], is a mixed-metal cluster with tetrahedral metal-core geometry. The W atoms are each ligated by a η^5 -methylcyclopentadienyl ligand and two carbonyl ligands, and the Ir atoms are each ligated by three carbonyl ligands.

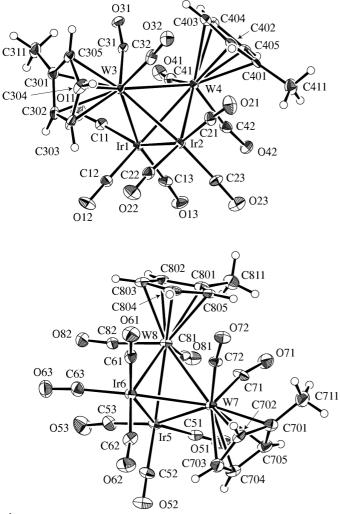
Comment

Mixed-metal clusters containing very different metals have attracted significant recent interest, with tungsten-iridium clusters the focus of a considerable number of studies (Waterman *et al.*, 2000). A precursor to much of the existing tungsten-iridium cluster chemistry is the cyclopentadienylcontaining cluster $W_2Ir_2(CO)_{10}(\eta^5-C_5H_5)_2$ (Shapley *et al.*, 1981). The methylcyclopentadienyl-containing clusters can be prepared analogously, as detailed below. This structural study, which reveals two independent molecules in the asymmetric unit, shows that the metal-metal core bond distances in the title complex, (I), are essentially identical to those of the cyclopentadienyl-containing analogue (Churchill *et al.*, 1982).

Experimental

Na[W(CO)₃(η^{5} -C₅H₄Me)] was prepared from Na (46.8 mg, 2.03 mmol), methylcyclopentadiene (410 mg, 5.11 mmol) and W(CO)₆ (543 mg, 5.10 mmol). IrCl(CO)₂(*p*-toluidine) (598 mg, 1.53 mmol) was added to the crude solid Na[W(CO)₃(η^{5} -C₅H₄Me)] in CH₂Cl₂ (20 ml), and the mixture stirred at room temperature for 2 h. The solvent was removed *in vacuo*, and the resulting red–brown residue dissolved in CH₂Cl₂ (*ca* 3 ml) then applied to preparative thin-layer chromatography (TLC) plates. Elution with CH₂Cl₂/petroleum spirit (2/3) gave two bands. Crystallization of the contents of the second and major band ($R_{\rm F} = 0.52$) from CH₂Cl₂/methanol by liquid diffusion at 276 K over 24 h afforded a red–brown crystalline product identified as W₂Ir₂(CO)₁₀(η^{5} -C₅H₄Me)₂ (733 mg, 81%). Analysis calculated for C₂₂H₁₄Ir₂O₁₀W₂: C 22.20, H 1.19%; found: C

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 February 2001 Accepted 26 February 2001 Online 9 March 2001


 $(\Delta/\sigma)_{\rm max} = 0.032$

 $\Delta \rho_{\rm max} = 3.35 \ {\rm e} \ {\rm \AA}^2$

 $\Delta \rho_{\rm min} = -2.86 \text{ e} \text{ Å}^-$

 $> 2\sigma(I)$

_3

Figure 1

A view of both molecules in the asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.

22.56 H 1.27%. MS (secondary ion, Cs^+): $[M - nCO]^+$, n = 2-10. IR (cyclohexane): v(CO) 2063 (m), 2028 (s), 2006 (m), 1995 (m), 1982 (m), 1965 (w), 1948 (w), 1921 (w), 1890 (w), 1827 (w) cm⁻¹. ¹H NMR: δ 5.25 (*t*, *J*_{HH} = 2 Hz, 4H, C₅H₄Me), 4.94 (*t*, *J*_{HH} = 2 Hz, 4H, C₅H₄Me), 2.18 (s, 6H, Me) p.p.m.

Crystal data

$[W_2Ir_2(C_6H_7)_2(CO)_{10}]$	$D_x = 3.236 \text{ Mg m}^{-3}$
$M_r = 1190.49$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 267775
a = 18.3035(1)Å	reflections
b = 8.5629 (1) Å	$\theta = 2.9 - 30.0^{\circ}$
c = 31.2876(2) Å	$\mu = 20.34 \text{ mm}^{-1}$
$\beta = 94.7702 \ (4)^{\circ}$	$T = 200 { m K}$
V = 4886.75 (6) Å ³	Needle, red-brown
Z = 8	$0.40 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: by integra- tion Gaussian (Coppens, 1970) implemented in <i>maXus</i> (Mackay <i>et al.</i> , 1999) $T_{\min} = 0.029, T_{\max} = 0.193$ 129 999 measured reflections <i>Refinement</i>	14 253 independent reflections 12 656 reflections with $I > 2\sigma(I R_{int} = 0.077 \theta_{max} = 30.1^{\circ}$ $h = -25 \rightarrow 25$ $k = -12 \rightarrow 10$ $l = -44 \rightarrow 44$
Refinement on F R = 0.042	H-atom parameters not refined $w = 1/[\sigma^2(F_o) + 0.0004 F_o ^2]$

Refine R = 0.042wR = 0.054S = 1.8112656 reflections 649 parameters

Table 1

Selected geometric parameters (Å).

Ir1–Ir2	2.7242 (4)	Ir5-W7	2.8021 (5)
Ir1-W3	2.8032 (4)	Ir5-W8	2.8596 (4)
Ir1-W4	2.8577 (4)	Ir6-W7	2.8363 (5)
Ir2-W3	2.8330 (4)	Ir6-W8	2.8482 (4)
Ir2-W4	2.8476 (4)	W3-W4	2.9891 (4)
Ir5-Ir6	2.7271 (4)	W7-W8	3.0108 (4)

Data collection: KappaCCD Software (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: TEXSAN.

We thank the Australian Research Council (ARC) for financial support in the form of a Large Grant and the funds to purchase the diffractometer, and Johnson-Matthey Technology Centre for the generous loan of iridium salts. NTL was an Australian Postgraduate Awardee and MGH holds an ARC Australian Senior Research Fellowship.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Churchill, M. R., Bueno, C. & Hutchinson, J. P. (1982). Inorg. Chem. 21, 1359-1363.
- Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.

Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

- Nonius (1999). KappaCCD Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.
- Shapley, J. R., Hardwick, S. J., Foose, D. S., Stucky, G. D., Churchill, M. R., Bueno, C. & Hutchinson, J. P. (1981). J. Am. Chem. Soc. 103, 7383-7385.
- Waterman, S. M., Lucas, N. T. & Humphrey, M. G. (2000). Adv. Organomet. Chem. 46, 47-143.